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Limit State: Analysis or Design

* Premise of Limit State Analysis:
 Failure is imminent
 Strength of all elements resisting failure are mobilized simultaneously

* Premise of Limit State Design:

» Developed ‘active wedge’ is resisted by reinforcement = Select
reinforcement with adequate margin of safety against rupture

* Ensure existence of margin of safety on strength of saoil

»Analysis is the basis for Design =» It defines conditions for
iImminent failure thus it allows meaningful use of prescribed
margins of safety on strengths



Synergistic Approach: Layout & Strength
"Internal Stability

= Strength, Connection, Pullout
* Analyses Determine Strength and Length

=External Stability

= Bearing Capacity, Direct Sliding, Eccentricity
(Overturning)

= Analyses Determine Length

*Global/Compound
= Slope Stability Analysis
= Analysis Determines Strength and Length

*Do we need such disjointed analyses?



Limit State Analysis: Lateral Earth
Pressure - Simplified AASHTO
(Internal Stability)

= Semi-empirical, calibrated at working load conditions
(i.e., not at limit state)

= Safe, fortunately economical, and easy to use=>»
Credit. Turned an innovative technology into a commodity

= Batter is limited to <20° = What about slopes?

= \What about complex geometries? Extrapolation to
realistic geotechnical conditions (e.g., variable layout of
reinforcement, marginal soils)?

" |s it actually adequate for limit state? If not, could it be
overly-conservative?



Limit State Analysis: Continuum
Mechanics (FE, FD)

= Comprehensive approach
= Valid for walls and slopes

= More complicated than AASHTO = Could be useful in
identifying potential failure geometries in complex problems

= Not yet a common design tool in the US

= Impractical tool to generate the instructive Tension Map at
limit state (i.e., baseline solution explained later)



Limit State Analysis: Global
Limit Equilibrium (LE)
= Simple and yet applicable to complex problems

= No arbitrary distinction between ‘wall’ and ‘slope’

= Global LE design is half-cooked=>» Strength is
examined globally - along a singular slip surface - while
locally required strength, including connections, is
overlooked =» That is, it ignores local demand by
smearing (shedding) the load amongst all layers

..Does not deal explicitly with ‘Internal Stability’ which is
concerned with local demand = It provides an
important, but narrow, design perspective
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; 'H"‘-“s\% = y
Culmann Street in Zurich:

Switzerland, near ETH=the— |
university where he was-d-—
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studied'there Mathematics and
Natural Sciences (1696 -1900)
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= Coulomb in 1766: Resultant
force on a retaining is based
on LE approach
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Coulomb (1776) Active Wedge -
Gravity Wall: Find max(P,)

= Free-body
diagram yielding
equilibrium

Premise: Small
outwards wall
movement = Active
soil wedge forms =
P, drops to P,

Note: Formatlon of planar surface does not mean wall failure
= Wall is designed to resist the active wedge

Physics is timeless...

13



Culmann (1866) Critical Wedge for
Reinforced Slope: Find maxz(T,,...)

Physics: Small stretch of
Free-body _
diagram /. reinforcement =

Active wedge
_ develops =
- /T me ; Load in
reinforcement
drops to T,

Note: Formation of slip surface does not mean structural failure =

Reinforcement is designed to resist the active soil wedge "



Bishop (1955) Circular Arc:
Find min(SF)=Fs

Q :
th l % Qw'
=1 Qi

Ts(x)

N

1 821jS

Es(x+Ax)

Test bOdy ES(X) W,

defined by 1.
/ circular arc Ts(x+/x)
/

Reinforcement at

e

/
B & i Si
X //’// 4, ﬁ‘\

Bishop considers layered soil/complex problems. Circle can degenerate to
planar surface (if it is more critical) but a priori assumed planar surface cannot
degenerate to curved surface = Valid for slopes and walls... 15
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LE:

T, = Tensile Capacity
Along Each Layer of
Reinforcement

(Note: Front and rear
pullout resistance
enables the
mobilization of
LTDS=T,1ps)

Reinforcement Loading

A - Unstable Tension
o - Stable Tension
O
(o)
m o E LIS
KB pullout Failure ” : " Pullout Failure [N
"7’ (front) (end)
o
- Available Reinforcement
T, Tensile Capacity
Connection
Strength

Roraforeomont Reinforcement Length o
(0) (L)
Wall Overview
Reinforcement
Layer

Available Reinforcc_ement

Wall
Facing

S WN

Reinforcement
0 Length L
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The Safety Map Tool

= Safety Map: Baker and Leshchinsky (2001) introduced
the concept, proved its mathematical validity, and
coined the term

= Safety Map = Color-coded map showing the spatial
distribution of the safety factors, SF, in a slope =
Visual diagnostic tool for the state of stability of a
reinforced mass

" Design Objective: Select strength & layout of
reinforcement to produce an efficient structure that is
adequately stable

18



Example Problem

0.5 m (1:4)

i

5.0 m (2:1)

1.0 m (1:5)

Homogeneous soil:
y =20 kN/m3
¢ = 28 deg.

19



Unreinforced Problem (Bishop)

Critical slip surface
coincinding with face
sFRange: | of unreinforced slopel,

4.39 \A

3.36
2.33

1.30
- 0.27




Adequate Reinforcement Layout using
Circular Arc (Bishop)

SF Range:

53,03 Long-term design strength, Titds = 10 kN/m

286 Length of reinforcement, L = 6.0 m
2.69
2.52
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Inverse of Safety Map...

= Safety Map finds the spatial distribution of the safety
factors, SF, in a reinforced soil mass

= Conversely, Internal Stability analysis in LE produces
the tensile resistance needed for Fs=SF=1.0
everywhere

= The Internal Stability approach produces the baseline
solution: Tension Map means T, ..(x), including T, .,
and T, for each layer =» It leads to a rational and robust
selection of reinforcement strength and facing

23



Tension Map: Visualization of T, ,(x)

Range of T—required
Valuesin [Ib / ft]

/ ¥ K N Color Code:

0.00

71.00
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639.00

\I/\/\/\/\/\/\/\/\/\/
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The Framework: Process in Nutshell

= Check numerous test bodies setting SF=1.0 and
calculating T,.4(x) for each layer =» Use a systematic top-
down process

= For T,.4(x) distribution, failure along any surface is equally
likely = T,,(x) therefore is termed Baseline Solution =
Tension Map

= The tension, T,(x), is limited by pullout at the rear and/or
front ends

" Troq(X) Is the resistance needed locally to yield a structure
at a limiting equilibrium state

25



Maximization Update...

qu = tensile force requirement

Treq(1) < Treq(z) < Treq(3) Failure surface #3

Failure surface #2

Failure surface #1

Treq(3)  Trea2)
Tensile force
requirement [
at segment #4 Treg(1)
\+ Rear end
Frontend ‘
T v P o P T S T e S — —
/AR
Segment #1 Reinforcement layer
Segment #n
Segment #4

26



Details: Baseline & Pullout

1. Tieq(X) 2. Rear pullout constraint

I I

3. Front pullout... oops 4. Adjust front pullout
= Upwards shiftis T,

27



Geosynthetic Reinforced Wall
(Alabama, Photo: Feb 2007)

Percolating water=» Decrease in c,' = Decrease in front pullout resistance =
Geogrid may not mobilize the needed resistance thus relying on added
resistance from connections = Connections strength for upper layers exceeded
= Failure

28



Can We Use ‘Better’ LE Methods for
Baseline Solution?

= Yes, we can...

= Recall the term framework presented here— it is not restricted to a
specific method of analysis

= Han and Leshchinsky (2006) used Culmann - instructive but has
imited use

= Leshchinsky et al. (2014) used log spiral - rigorous but not easy to
use (also, limited to homogenous problems)

= Leshchinsky et al. (2017) used Bishop - not rigorous but practical

= YOU may use rigorous a LE (e.g., Spencer, M-P) with general slip
surface. You can even use Limit Analysis of Plasticity...

29
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Advancement of Current Design

=Apply the LE design approach in two stages:
Internal Stability and Global Stability

=Stage 1: Internal stability - Find T,.,(x) in all
reinforcements - Baseline Solution

=Consider geometry, loading conditions,
reinforcement layout, pullout resistance, any
batter, water, seismicity, efc.

=Stage 2: Global stability - consistent with current
design = Standard slope stability analysis

31



Stage 1: Internal Stability
*Find T,(x) including T, & T, (connection)
=Determine max(T,,,,) {0 select geosynthetic
. LTDS:Fs-strengthXmaX(Tmax) where Fs-strength=/I 0

*T,~=LTDS X RF_ X RF4 X RF4

=Stage 1 is a rational and robust alternative to
existing approaches=>» Ensures that there is no
overstressing of reinforcement

32



Stage 2: Global Stability

=Select reinforcement and facing following
Stage 1

=Conduct global slope stability analysis to
ascertain that for the selected facing, layout
and strength reinforcement, Fs=1.30 for all
feasible failure geometries

"|ncrease the length and/or strength of
reinforcement, if needed to meet the
prescribed on soll strength Fs

33



Stage 2 Conducts Global Stability
Why use then Internal Stability?

- Reinforcement resistance in Global
Stability is evenly divided amongst all
layers = Results in T, that is
smaller than in Internal Stability =
Global ignores local demand through
'smearing’

- Global Stability tells us nothing
about connection load, T,

Global Stability: Locus of T, IS
NOT on a singular surface.

I HARRERS I

Lol
/HIII + ‘

[ulll V

IV

W W’ i
IIHIH /M i

*‘M H i

/H|| /
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So Why Stage 2 is Important too?

J B

i
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Example Problem

Stacked concrete facing

— 340
= 130 pcf

37



Stage I: Get T,,(x) and T,

Objective: _

Find T,.x > T,=1.5LTDS e —
— U o e g | o
= 1.5 RFy RF, RF, T, ., e

T+eq. Critical Cirde Save Settings

Design Distribution  Actual distribution Results:

If reinforcement strength is same as e

Treq(x), any circle through layers will |== = = == il

Adjusted | | Adjusted Tabulated Results

have the same Fs=1.0 = Al circles S IR 0
are equally critical = Baseline o m C L

I
results are rendered to select . il
reinforcement with adequate Tult TSI T
ensuring sufficient margins of safety A .

THITHHIY T
Wl WIHM...

Note: There is NO well-defined
Active Wedge as postulated in most M ..

HH .

uﬁ i,

| i
11,

simplified designs NP




Circle for Layer 9 Determining T, ,_,,- Note that Treq

is limited by Pullout Resistance thus Shedding

load to layers below

| REFRESH | | o
Display Results Set Graphic Scale s
+ - + -
| T-req. I | Critical Circle | Save Settings
Design Distribution Actual distribution Results:
(Fs-po=const.) of of Fs-po(X) on
Pullout Resistance: Pullout Resistance: All T-req.

About To:

TLETRET Front Front

Adjusted | | Adjusted
Front Front

G%B
v

X =83.34ft.
Y = 125.62 ft.

9

Max. T-req = 920.62 Ib/ft
at X=106.58ft

Locus of Tmax

Critical Circles

Tabulated Results
Pullout:
All Rears

All Fronts

All Adjusted
Fronts

Display:

Tension Map

Toe point i /

M ——

X
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Determining To: For Treq, frontend
pullout resistance must be satisfied

Display Results :
for Layer M. Wlayers)  Set eS| Essont
+ -

+ -
Critical Circle Save Settings
Design Distribution  Actual distribution Results:
(Fs-po=const.) of of Fs-po(X) on i
Pullout Resistance: Pullout Resistance: All Treq. __TTTT]
Reax Rear Locus of Tmax rerurl LI LT T
About To:
Important | [ . . Front Critical Cirdes | | Lt
Adjusted || Adjusted Tabulated Results
Front Front
Pullout:
A All Rears
q%» All Fronts
T-req. | Critical Circle save §e’i’6h"g“§ 4
Design Distribution Actual distribution Results:
(Fs-po=const.) of of Fs-po(X) on
Pullout Resistance: Pullout Resistance: All Treq.
Rear Rear Locus of Tmax
About To:
Important Front Front Critical Circles
Adjusted || Adjusted Tabulated Results
Front Front
Pullout:

All Rears

q%»
v m——




Tension Map: Color Coded Visual of T,

. - - Tensile Resistance X

/ Color Code:

1 B o e

Valuesin [Ib / ft]

[ [ [ 0.00

% 41



T,...x and T, Distributions

Tmax and To for each layer

Tmax

To

Layer #10
Laver# 9
Layer # 8
Layer# 7
Laver #6
Layer#5
Layer # 4
Layer # 3
Layer # 2
Layer # 1

b4
\\ -
250 500 750 1000 1250 1500
[ IbAft]
RETURN
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Estimate Horizontal Displacement

Estimated Horizontal Displacement, d, at Face of Slope for Specified Fs X
5 | Peige | Giant |Tansda Modikies of || Hoizonat' A & [x]
f from inputof | Geosynthetics, J, |Displacement at
e Toe LTDS at 2% strain Face of Slope, d
n
= [ft] [ Ibift [Ibift ] [inch] CALCULATE
1 0.67 7 34000 0.28
2 2.67 34000 EY
4 467 7 34000 1.88
4 6.67 920.7 34000 24 Layer # 10
5 8.67 34000 3.05
g 10.67 920.79 34000 3.38
7 | 1267 | 92079 3.48 Layer #3
8 14,67 920.79 34000 3.38
9 16.67 920.79 34000 3.20 Layer # 8
10 18.67 920.79 34000 2.44
Layer# 7
Layer # 6
v
< >
Layer# 5
NOTES: /
1. The approximated horizontal displacement at the face of the slope is appropriate Layer # 4
for limit state; i.e., when your specified Fs=1.0 in top-down approach leading to
full mobilization of the soil strength considering rotational slip surfaces.
2. The approximated horizontal displacement, d, is calculated following this Layer # 3
expression: 3 .
n Where: Tiis the force calculated at segment i and
d=>" (z
o o AX; AXis the length of segment . Layer # 2
=1 Thatis, AX;=L/n whereLislength of
the considered reinforcement layer and n is the number of segments along a
layer specified in your data (between 50 and 200). Jis the tensile modulus of the Layer #1
reinforcement having unit of [Force/Length].
Typically, Jis determined at 2% geosynthetic strain. 5
3. The displacement d is solely due to estimated cumulative elongation of the [inch]
reinforcement. It does not reflect possible translational movement of the
reinforced mass. To avoid translational movement, conduct 2-part wedae global
stability analysis (in Global Stability mode) verifying that for the selected layout of
reinforcement the global Fs is adequate, typically >1.3 .
DEFAULT Cancel




Stage Il: T,,c1.5RF T, = 3020 Ib/ft
Run Global Stab.: Fs=1.39>1.30 OK

| REFRESH oK
Display available distribution of tensile resistance Minimum factor of safety = 1.39 I
forlayer: [6 | (Max. 10layers) Radius = 727.87 ft.
2|=]
E Layer #E of type #1 : Type Red
1 2 3 4
Re-Run...
X[f) 100.27 10089 11227 11427
n T [Ib/ft] 1037.09 138278 138278 0.00
//
X =83.83 ft.
Y = 125.96 ft.
Show Scale 7 &
Gridlines /
Right-dlick to change Type /
or Length of reinf. or soil
parameters. /
o

Toe point i /




Run 2 Part Wedge Sliding using
Spencer - Fs=2.07 OK

‘ oK Show: Implied bearing load and eccentricity

” REFRESH

Display critical 2-part wedge

along Layer: (Max. 10 layers)
= Toe Elevation

1 Re Run for
Reinforcement
Layer #1

q g B Show Scale
v Gridlines
.

X=112.1ft
Y =90.8 ft.

Minimum Fs (reinf. layer #1) = 2.07

Fs minimum found in this run = 2.07

Toe point




Using Spencer: Get Normal Stress
and Meyerhof ¢ ,=R/(L-2e)

- e,

Hide: Implied bearing load and eccentricity

" REFRESH l |

Display critical 2-part wedge

along Layer: E (Max. 10 layers)
+

Toe Elevation

Re Run at
Toe elevation

dgb Show Scae
v

Gridlines

X = 106.1 ft.
Y =90.8 ft.

Minimum Fs (@ toe elevation) = 2.28

Bearing load = (resultant of normal stress distribution
over B —see vector drawn on base) = 37897.33 [Ib/ft]
e =0.57 ft. (torightof CL).

Fs-sliding = 2.28
Width of “footing,” B = 14.00 ft.

Indination of interslice force, theta=delta = 23.1°

Fs minimum found in this run = 2.07

Show 2-part wedges at toe elevation and
respective normal stress distribution

Toe point

i

!
‘

1l
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Benchmark Problem

N

10

<« 1=42m (UH=0.7) ——>

1]

H=6 m

Reinforced Soil:

v = 20 kN/m3
6 =34°&c =0

S,=0.6 m

*= 0= 0.8; C4s=0.8; Fypo=1.5

Retained Soil:
v = 18 kN/m?3
¢ =30°&c =0

Foundation Soil: y = 18 kN/m3, ¢ = 30°, c = 10 kPa
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Computing T, in Internal Stability:

Critical Circles

1. Hypothesis in
AASHTO: Locus of
T... IS defined by a
singular slip surface.
Is it?

2. Well-defined active
and resistant zones.
Is it?

IIIIIHI

L [

miil

il

1l

Hlllll.
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Tension Map

The mobilization
of tension in each
reinforcement
can be visualized
through the
Tension Map =>»
Note location of
Tmax

49



T,...x and T, Distribution

I I
LE: To LE: Tmax
Layer # 10 = _— — .
Laver#9 < il
N
Layer # 8 \ ~
\ - - -
Layer # 7 \ - SlmpllfIEd |
\ -
Layer#6 \ - — = AA_SH TO. -
Layer#5 I \—\ TO — Tm ax —
Layer # 4 \\ s, < ; ]
Layer # 3 ) . . {
Layer # 2 N, =
Layer #1 N
5 10 15 20
[ kN/m ]

max(T.....): LE = 10.9 kN/m AASHTO =19.3 kN/m



Horizontal Displacement Distribution

Layer # 10 S

I6q(X) for Fs=1.0 allows for \\
Estimation of the lateral

displacement at a limit state
e.qg., for /=500 kN/m

Layer# 6

Layer# 5

Layer # 4

Layer# 3

Layer # 2 /

Layer # 1

10 20 30 40 50 60 70 80 390 100

[ mm ]



Computed Distribution of T ., (X):

R.=0.2

/nlll”HHHHHHHHHHHHHHHII| llllllll |
A
RN HIR AT
O,
L

AT

Toepo%ll.
) %
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Effectsof R_.on T, ., and T,

I 1 I I I
R.=0.2 LE: To LE: Tmax
Layer # 10 - Layer # 10 = — o
b‘\; ) g
Layer # 9 \ . Layer # 9 \
Layer # 8 > \ Layer # 8 \
Layer# 7 Layer# 7 \
Layer # 6 Layer # 6
AN

Layer#5 Layer#5 — —
Layer # 4 o N A Layer # 4 i f

\ / N
Layer # 3 4 Layer # 3 — —_—

\| [ \ R.=1.0
Layer ## 2 \ / Layer # 2 \ —
Layer # 1 \ Layer # 1
10 20 30 40 50 60 70 80 90 100 5 10 15 20
[kN/m ] [kN/m ]

Note the different drawing scale for T,._, and T,



Effects of Secondary Layers

T u T

e e
e
o UL
oMb

S U . |
T SEEAT TR

.

o
..... T T
T AT
Lt COLLLLLLORT LT L L L
ATy,

TR L L
AT,
AT,
T
.
AT, |
Illll|||||||||H|||||||||lllllll|m_ I

I T, |
T T TTTTITE. 1
SecaniE LeEs: MMPY(ATITT. I
i L=1.2m, S,=0.6 m MHHW L, !
Primary Layers: [T, Primary Layers:
) L=4.2m, S,=0.6 m Yol LlLL L=4.2m, S,=0.3m

B o4



T, and T,:
Secondary versus Close Spacing

1 1 1 1 |
Primary/Secondary Layout S,=0.3m
Layel #19 — Laye[ #19
Layer #18 - Layer # 18
Layer #17 :} Layer # 17
Layer #16 Layer # 16
Layer #15 } Layer # 15 ‘\
Layer # 14 H Layer # 14 LY
Layer #13 Layer # 13 \
Layer #12 Layer # 12 X
Layer # 11 | Layer # 11 LY
Layer #10 N Layer # 10 \
Layer#3 ] Layer # 9 \
Layer # 8 S~ Layer # 8 1
Layer # 7 P 4 V4 Layer # 7 LY
Layer # 6 - Layer # 6 X
Layer #5 7 Layer # 5 X
Layer # 4 Layer # 4 \
Layer # 3 \ Layer # 3 LY
Layer ## 2 N Layer # 2 1
Layer #1 Layer # 1
5 10 15 20 5 10 15 20
[kN/m ] [kN/m]

Depending on relative length of secondary reinforcement, it may decrease
T..x- Generally it has significant effects on T, (connection loads).



Effects of Shorter Reinforcement

bt T
i |11s..
Ilnllll I
/.HI 111/
[ll 1,/
/ J
I /
[LI L /
I
. | L/H=0.5 (L=3.0 m)

|

Illl||||

IR e I

/.1|||||||HH|HH

TR,

Lot

T,

Lot

T,

AT

HHIIlml/

LA

A

W

|

HITHTTTe

ll
I

||||||l|

L/H=0.7 (L=4.2 m) /

point ¥ HIM[
e
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Effects of Shorter Reinforcement:
T.. and T,

| |
LE: To LE: Tmax
Layer # 10 / \ Layer #10 )\/ — —=
—
Layer # 9 \ Layer # 9 \
Layer # 8 \ Layer # 8 \
Layer # 7 \ \ Layer # 7 \
Layer # 6 \ Layer # 6
Layer #5 [ /H=0.5 — Layer #5 L/H=0.7 |
Layer # 4 : — Layer # 4
Layer # 3 Layer # 3 \\
Layer ## 2 Layer # 2 \
Layer # 1 \ Layer # 1
5 10 15 20 5 10 15 20
[kN/m ] [kN/m ]

Generally, lower layers carry higher load due to compound failures =
Upper layers need to contribute less to produce Fs=1.0 = Top layer
carries less load thus resulting in smaller T,,,, and T,



Effects of Backslope

2(h):1(v) backslope
Backslope Rise 2.1 m

Flat Crest
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Computing T, .., in Internal Stability:
Critical Circles

Note:

Global Stability =
Top 4 layers are
not needed for
stability.

Baseline Solution,
Stage 1 2
Identifies the need
for these layers!
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Effects of Backslope:
T.. and T,

I I
‘ ‘ LE: 10 LE: Tmax
ta”':;” Backslope: 2(h):1(v) with 2.1 m rise t”z;" R
ayer aper B
Layer# 8 \\ Layer # 8 \\
Layer # 7 Layer # 7 \
Layer# 6 Layer # 6
Layer #5 Layer#5
Layer # 4 \ Layer # 4 \
Layer # 3 Layer # 3
Layer # 2 \ Layer # 2
\R‘
Layer # 1 Layer # 1
5 10 15 20 5 10 15

[kN/m] [kN/m ]



Effects of Surcharge (Dead Load)
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Effects of Surcharge: T, and T,

Strip Footing Surcharge: 100 kPa Tl = Tl
(B=3.0m; C.L. 4.6 m from Toe) LE: To . _m i
Laver #10 Layer #10 . —
ayer / \\ aye )/-"' P
Layer # 9 \ \ Layer # 9 \
Layer # 8 Layer# 8
Layer# 7 \\ \ Layer# 7 \\
Layer # 6 Layer # 6
Layer #5 Layer#5
Layer # 4 Layer # 4 \ NO L
Layer # 3 Layer# 3 B
Surcharge
Layer # 2 Layer # 2 I~
Layer #1 Layer # 1
5 15 5 15 20
[kN/m] [kN/m]
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Effects of Seismicity
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Critical Circles Rendering T,

AASHTO assumes singular Rankine’s
wedge within reinforced mass = Its
inertia is evenly distributed amongst
all layers to produce T,,, = AASHTO
ignores compound-like wedges where
fewer layers are carrying larger inertia
loading
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Seismic Effects: T, and T

Layer # 10
Layer# 9
Layer # 8
Layer # 7
Layer # 6
Layer #5
Layer # 4
Layer # 3
Layer # 2
Layer #1
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e 8

Seismicity:

Kn=0.2
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Effects of Facing: Small Blocks
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Effects of Small Blocks Facing:
T.. and T,

Large blocks or high interblock and toe resistance may reduce
significantly the need for reinforcement (length and strength)
| I

\LE:To ||| LE: Tmax

bl Small Blocks Facing Units Layer #10 = ,
Layer #9 Layer #9 1 NO Fa Clng
Layer # 8 Layer # 8 \
Layer# 7 Layer # 7 \
Layer # 6 Layer # 6 \
Layer #5 K Layer# 5
Layer # 4 \ Layer # 4
Layer # 3 \ Layer # 3 \\
Layer # 2 \ / Layer # 2
Layer #1 . Layer # 1 \

5 10 15 20

[kN/m] [KN/m ]



3(v):1(h) Two-Tier Wall
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Tension Map: 2-Tier Wall

Range of T-required

Valuesin [kN /m]




Roadmap of Presentation

= Why Limit State analysis is needed?

* Available Limit State Methods of Analysis
= Limit Equilibrium: Global Approach

* The Safety Map Tool

_imit Equili
_imit Equi

_imit Equi

orium: Baseline Solution
orium: Design Approach

orium: Examples

= Concluding Remarks
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Concluding Remarks

] Baseline Solution: Fs=1.0 on soil strength is used
to determine LTDS, consistent with Internal
Stability principles = LRFD can be used, same
as in AASHTO

T, and T,: Global Stability ignores possible local
overstressing while the Baseline Solution
considers local demand rationally

1 Global LE: Applicable to external stability --
sliding, eccentricity, and bearing load
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