Infill Weight Calculations

NW-R NOVUM WALL RETAINING BLOCK WITH SOIL INFILL

INFILLED UNIT WEIGHT CALCULATIONS

Note: 24 in $(610 \mathrm{~mm})$ dimension used in infilled unit weight calculations. Blocks with wider face textures may result in slightly higher weights.

CONCRETE

Design Unit Weight $=143$ pcf $\left(2291 \mathrm{~kg} / \mathrm{m}^{3}\right)$
RIDGE FACE TEXTURE
Average Volume (Vc)
Concrete Block Weight (Wc)
SUMMIT FACE TEXTURE
Average Volume (Vc)
Concrete Block Weight (Wc)
Average Center of Gravity (COGc)
$4.38 \mathrm{cft}\left(0.12 \mathrm{~m}^{3}\right)$ (From CAD Model)
$\mathrm{Wc}=4.38 \mathrm{cft} \times 143 \mathrm{pcf}=626 \mathrm{lbs}(284 \mathrm{~kg})$
$4.29 \mathrm{cft}\left(0.12 \mathrm{~m}^{3}\right)$ (From CAD Model)
$\mathrm{Wc}=4.29 \mathrm{cft} \times 143 \mathrm{pcf}=613 \mathrm{lbs}(278 \mathrm{~kg})$
12.6 in (320 mm) (Data from CAD Model)

DESIGN VOLUME

24 in $x 46.125$ in $\times 9$ in $=9,963 \mathrm{in}^{3}=5.77 \mathrm{cft}$ ($610 \mathrm{~mm} \times 1172 \mathrm{~mm} \times 229 \mathrm{~mm}=0.16 \mathrm{~m}^{3}$)

INFILLED UNIT WEIGHT

RIDGE FACE TEXTURE
$\gamma_{\text {INFILL }}=(626 \mathrm{lb}+79 \mathrm{lb}) / 5.77 \mathrm{cft}=122.2 \mathrm{pcf}$
$\left((284 \mathrm{~kg}+36 \mathrm{~kg}) / 0.16 \mathrm{~m}^{3}=2,000 \mathrm{~kg} / \mathrm{m}^{3}\right)$

SUMMIT FACE TEXTURE
$\gamma_{\text {INFILL }}=(613 \mathrm{lb}+79 \mathrm{lb}) / 5.77 \mathrm{cft}=119.9 \mathrm{pcf}$
$\left((278 \mathrm{~kg}+36 \mathrm{~kg}) / 0.16 \mathrm{~m}^{3}=1,962.5 \mathrm{~kg} / \mathrm{m}^{3}\right)$
Design Unit Weight $=100$ pcf $\left(1602 \mathrm{~kg} / \mathrm{m}^{3}\right)$
Soil considered as infill includes the soil between adjacent blocks and in the geogrid
slot.

Volume (Vs)
Infill Soil Weight (Ws)
Center of Gravity (COGs)
$0.79 \mathrm{cft}\left(0.02 \mathrm{~m}^{3}\right)$ (From CAD Model) $\mathrm{Ws}=0.79 \mathrm{cft} \times 100 \mathrm{pcf}=79 \mathrm{lbs}(36 \mathrm{~kg})$ 9.9 in (252 mm) (Data from CAD Model)

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.

